المشاركات

عرض المشاركات من أغسطس, 2023

نحو فلسفة رياضياتية أدائية

 لنبدأ من سلافوي جيجك ونظريته في العلامة في قسيمها الدال والمدلول حيث يقدم جيجك نوعين من الأداء للعلامة: الأول: أن يقوم الدال بوظيفة المدلول ويمثل عليه الفيلسوف السلوفاني بعندما أجتاز قبصر نهر الروبيكون في هذا اللحظة عندما قرار قراره الخطير الذي جعله عدو روما، نلغي السياقات ليصبح متعالي قيصر لم يجتز النهر بل اجتازه ليكون قيصر الرمز وليس الشخص الذي نستحضره عندما نتناقش عن أمبراطورية روما. ما يسميه لاكان الدال الفارغ الذي يصبح ذا معنى. الثاني: أن يسقط الدال في المدلول وهو تماما العكس عندما يختفي المعنى ويكون فراغا ويمثل عليها بالذات التي يقول عنها لاكان أنه التي عليها أن تفترض ثم تفترض حتى تصبح هي الافتراض، عندها يصبح المحمول هو الحامل وتصبح الذات هي الفراغ الذي لا يمكن الوصول إليه. لننسى النوع الأول لأننا ما يهمنا الآن هو النوع الثاني، المشكلة هنا أن جيجك يرى أننا لا يمكن أن نصل إليها وكأنها الفراغ الذي يومض بين دالتين لكن يقنعنا جيجك أن هذا شيء جيد لأننا عندما نجد هذا الفراغ ونصاب بخيبة الأمل "نفهم" ويتحول السلب إلى إيجاب فنعرف أن حقيقتنا في الخارج أو ما يصبه جيجك أن الحقيقة ...

رياضيات كوينتين مياسو رحلة إلى مملكة الموت

صورة
  يقص مياسو Quentin Meillassoux هذه القصة: كان هناك عالم رياضيات على الشاطئ ومعه طفل يريد أن يخبره عن نظرية المجموعات وجد صدفات على شاطئ البحر خط خطوطا بينها ليخبره عن مجموعة القوة power set. ما الذي جرى هنا؟ هذا الشخص بخياله السحري تلاعب في الفراغ أو العلامات الفارغة أو ما يطلق عليه مياسو Kenotype. لنوضح قليلا... في محاضرة برلين بعنوان "Iteration, Reiteration, Repetition: A Speculative Analysis of the Meaningless Sign" في النصف الأخير من الورقة يتعمق مياسو في طبيعة الرياضيات ويعلن بصراحة القطيعة مع المادية القديمة التي تتمثل في القطيعة مع مبدأ العلة الكافية القائل بأن هناك  سبب لوجود وتغير كل شيء وينتقل إلى العرضية المطلقة وهذا في تقديره التصالح مع المطلق فسؤال لماذا هناك وجود بدل العدم؟ يتحول إلى سؤال لماذا هناك شيء بدلا من شيء آخر؟ الإجابة لا شيء يقولها مياسو بملئ الفم. نعود إلى المسألة الرياضية عندما نجلس عند الصدفات فإن عرضيتها مطلقة بعلامة فارغة دون أي معنى فهي لا تزال في طور النوع الذي لم ينفرد. ما معنى كلامي سأسهل المسألة بكلام بيرس عن العلامات وتصنيفها نحن في المثلث ...

الطوبيقا السسيتامية

صورة
 ذكر كانط في كتابه "نقد العقل المحض" هذا المصطلح الذي احببت أن ألقي عليه الضوء وأخرج ما أظنه خبايا مهمة اعتبرها التماعات في فهم أطروحة كانط بأكملها. يعرف كانط هذا المصطلح في نفس الصفحة: عندما تكون الخانات موجودة ولا يبقى سوى ملئها وفي الطوبيقا السستامية ليس من الصهب أن نتعرف على الموضع المناسب لكل أفهوم بالضبط وأن نلحظ في نفس الوقت المواضع التي لا تزال فراغه. لا ننسى أن كان ذكر في كتابه أن: السستام يتعين تحت فكرة واحدة وأن هذا التمام والتمفصل يصلح في نفس الوقت محكا لصحة وصفاء كل الأجزاء المعرفية الداخلة فيه. نبدأ بالخانات التي تشكل وحدة متجهة من الأعلى إلى الأسفل ما نصنعه هنا بمباركة كانط هي بوصلة مفاهيمية تظهر لنا المفاهيم التأليفية ببساطة يصعب على من لا يملك هذا المربع أن يكشفه وكأنك تطلب منه الملاحة دون بوصلة. لنذكر أن هذه ليست خريطة ذهنية بل مربع يساعدنا على التحقيقات وربط المفاهيم والكشف عن العلاقات وكأننا ننقب في أحفورة لتكشف لنا ما هو غائب أو الإفتراضي فهناك تجربة ذهنية حقيقة منتجة لمعرفة جديدة. هذه الرسيمة diagram التكوينية تحتاج إلى مكونات: نملأها أولا بالحدس والفاهم...